Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 36
items per page: 25 50 75
Sort by:

Abstract

The article is a case study of the steel milling ring casting of about 6 tonnes net weight. The casting has been cast in the steel foundry the authors have been cooperating with. The aim was to analyse the influence of the shape of the chills and the material which was used to make them on the casting crystallization process. To optimally design the chills the set of the computer simulation has been carried out with 3 chills’ shape versions and 3 material’s versions and the results have been compared with the technology being in use (no chills). The proposed chills were of different thermal conductivity from low to high. Their shapes were obviously dependant on the adjacent casting surface geometry but were the result of the attempt to optimise their effect with the minimum weight, too. The chills working efficiency was analysed jointly with the previously designed top feeders system. The following parameters have been chosen to compare their effectiveness and the crystallization process: time to complete solidification and so-called fed volume describing the casting feeding efficiency. The computer simulations have been carried out with use of MagmaSoft v. 5.2 software. Finally, the optimisation has led to 15% better steel yield thanks to 60% top feeders weight reduction and 40% shorter solidification time. The steel ring cast with use of such technology fulfil all quality criteria.
Go to article

Abstract

In this study, we examined whether and to what extent oxidative stress is induced in seedlings of two winter triticale (Triticosecale Wittm.) varieties (susceptible Tornado and resistant Witon) in response to infestation by the cereal grain aphid (Sitobion avenae L.) and bird-cherry-oat aphid (Rhopalosiphum padi L.). We compared the level of hydrogen peroxide (H2O2) and lipid peroxidation products as well as markers of protein damage (protein-bound thiol and carbonyl groups). The studied parameters were measured at 6, 24, 48 and 96 h post-initial aphid infestation compared to the non-infested control seedlings. Our studies indicated that the cereal aphid feeding evoked oxidative stress in the triticale seedlings. Cereal aphid feeding increased the H2O2 level in triticale tissues, with maximum levels observed at 24 and 48 h post-infestation. Triticale infestation with aphids also increased lipid peroxidation products in triticale seedlings, with the maximal levels at 48 or 96 h post-infestation. Further, there was a reduction in protein thiol content and an increase in protein carbonyl content in the triticale seedlings after infestation with female aphids. Stronger triticale macromolecule damages were evoked by the oligophagous aphid R. padi. There was a more substantial protein thiol content reduction in the resistant Witon cultivar and higher accumulation of protein-bound carbonyls in the tissues of the susceptible Tornado cultivar. The changes were proportional to the aphid population and the time of aphid attack. These findings indicate that the defensive strategies against cereal aphid (S. avenae and R. padi) infestation were stimulated in triticale Tornado and Witon seedlings. Our results explain some aspects and broaden the current knowledge of regulatory mechanisms in plant-aphid interactions.
Go to article

Abstract

The aim of our research was to connect the detailed study of fruit anatomy of black crowberry (Empetrum nigrum) with identification and detection of the main non-anthocyanin polyphenolic compounds. Our experimental results showed that the highest accumulation of anthocyanin bodies occurred in mature fruits in outer layers during fruit development. The shape of the anthocyanin bodies was most often globular, spherical, hemispherical and intermediate types were present only occasionally. Mature cells of the gynoecium and pericarp generally contain anthocyanin bodies incorporated inside vacuoles. The observed compounds accumulated in cells were rutin, quercetin and catechins, resveratrol; coumaric, p-coumaric, caffeic, ferulic acids, gallic, vanilic, syringic, cinnamic and caffeic acids. These compounds were selected because of their proposed positive effects on health. The analyses of the polyphenolic spectrum showed predominance of ferrulic acid together with gallic acid and catechins with quercetin.The aim of our research was to connect the detailed study of fruit anatomy of black crowberry (Empetrum nigrum) with identification and detection of the main non-anthocyanin polyphenolic compounds. Our experimental results showed that the highest accumulation of anthocyanin bodies occurred in mature fruits in outer layers during fruit development. The shape of the anthocyanin bodies was most often globular, spherical, hemispherical and intermediate types were present only occasionally. Mature cells of the gynoecium and pericarp generally contain anthocyanin bodies incorporated inside vacuoles. The observed compounds accumulated in cells were rutin, quercetin and catechins, resveratrol; coumaric, p-coumaric, caffeic, ferulic acids, gallic, vanilic, syringic, cinnamic and caffeic acids. These compounds were selected because of their proposed positive effects on health. The analyses of the polyphenolic spectrum showed predominance of ferrulic acid together with gallic acid and catechins with quercetin.
Go to article

Abstract

Metal ions can modify plant metabolism and change the level of biologically active components. In the present study, the impact of short-term exposure to strontium on the accumulation of the metal as well as the content of isoflavones in soybean sprouts was investigated. The seeds were germinated in hydroponics with 0, 1, 1.5, 2.5, 5.0, or 10.0 mM of Sr for 72 hours. The content of strontium was assessed using flame atomic absorption spectrometry and the amount of isoflavones was determined with high performance liquid chromatography. Dose-dependent accumulation of Sr and a linear correlation between the Sr concentration in the growth medium and the content of the element in the plant samples were observed. The largest changes in the isoflavone content, compared to the control, were noted in soy sprouts germinated in the presence of 5 and 10 mM of strontium. Daidzin, genistin, malonyldaidzin, and malonylgenistin were the dominant isoflavones and their content increased by approx. 28, 44, 34, and 47%, respectively, compared to the control. Low amounts of aglycones were found; moreover, their content decreased by ca. 19–30%. Our research can be important for obtaining a natural product enhanced with strontium and isoflavones, which contribute to prevention of osteoporosis associated with endogenous oestrogen deficits.
Go to article

Abstract

Athyrium christensenianum is considered an apogamous fern species that has originated from a hybrid of diploid sexual A. crenulatoserrulatum and tetraploid sexual A. decurrentialatum. There have been recent reports on tetraploid sexual A. christensenianum. In this study, I attempted to understand the relationships between triploid and tetraploid A. christensenianum. It appeared that tetraploid sexual A. christensenianum is of a hybrid origin between ancestral diploid sexual A. decurrentialatum and A. crenulatoserrulatum. In addition, triploid A. christensenianum did not seem to be of a hybrid origin between diploid sexual A. crenulatoserrulatum and tetraploid sexual A. decurrentialatum, rather of a hybrid origin between tetraploid sexual A. christensenianum and diploid sexual A. crenulatoserrulatum.
Go to article

Abstract

Clarifying the genetic background of the drought-tolerance trait is a crucial task that may help to improve plant performance under stress by a genetic engineering approach. Dehydration-responsive element-binding protein (DREB) is a transcription factor family which modulates many stress-responsive genes. In this study, we isolated a DREB homolog gene named ZmDREBtv from Zea mays var. Tevang-1. Using bioinformatic tools, a number of InDels and SNPs in ZmDREBtv sequence different from the reference accession were identified. In addition, based on deduced protein sequence similarity, ZmDREBtv was assigned to transcription factor DREB2 class as featured by a conserved DNA binding domain - AP2. The ZmDREBtv construct under thecontrol of the rd29A promoter was transformed into a drought-sensitive maize plant, K7 line. The transgenic plants were assessed with reference to molecular and phenotypic characteristics related to the drought-tolenrance trait. The results proved that the maize plants carrying ZmDREBtv gene showed enhanced tolerance and better performance to the water-deficit environment at different stages, compared to the wild-type plants.
Go to article

Abstract

Morocco is basically an agricultural country; almost 40% of the workforce is employed in this sector. Xylella fastidiosa is a xylem-inhabiting pathogen which can infect more than 300 plant species, although most host species are symptomless. Until relatively recently, X. fastidiosa was primarily limited to North and South America, but in 2013 a widespread epidemic of olive quick decline syndrome caused by this fastidious pathogen appeared in southeastern Italy, and later several cases of X. fastidiosa outbreaks have been reported in other European countries (France, Germany and Spain). Following these recently confirmed findings of X. fastidiosa in the European Union, this bacterium has become a serious threat to the Moroccan flora. The national phytosanitary authorities have adopted several measures to prevent the introduction of X. fastidiosa into the national territory by deciding, inter alia, to suspend importation of host plant species to the bacterium from infected areas. This paper presents the phytosanitary risk of this bacterium in Morocco.
Go to article

Abstract

One of the biggest problems for sand casting foundries must be the waste produced from disposable molds. Stricter environmental regulations make it harder to dispose of waste sand, so a truly competitive foundry does no longer only make great products, but also concentrates on a sustainable casting process. While methods for repurposing waste foundry sand are still limited, the internal circulation of such sands proves significant possibilities. This paper will focus on thermal reclamation of foundry sands in a special rotating drum furnace in a central facility to serve several foundries. Thermal reclamation is a process for handling foundry sands in elevated temperatures to combust unwanted substances from reusable base sand. The introduction focuses on background of the Finnish foundry business, the most common sand systems in Finland and their reclaim properties. The experimental part features presentation of the new reclamation plant process and the conducted test runs. The samples collected from each test run have been laboratory tested to assure proper sand quality. The results of this work showed that the reclamation of alkaline phenolic no-bake sands was excellent. Reclamation of green sands did not provide satisfactory results as expected and the reclamation of furan no-bake sands provided mixed results, as the raw material was imperfect to begin with. The most important result of this work is still the successful initiation of a centralized thermal reclamation plant, with the ability to reclaim sands of several foundries. With this all of industrial symbiosis, circular economy and sustainability advanced in Finland, and the future development of this plant provides even further opportunities and a possibility to spread the ideas on a global scale.
Go to article

Abstract

The results of estimation of home scrap addition in charge influence on durability and wear of casting instrumentation life in the highpressure casting technology using the hot chamber machine of alloy of AZ91 are presented. The wear of the following elements of the casting instrumentation so-called "casting set" as: syphon, plunger, sliding-rings, nozzle and injection moulding nozzle was estimated. A wear was estimated quantitative by registering the number of mould injections for different charges to the moment of element damage supervision. A damage had to be at such level that liquidated an element from further exploitation and necessary was an exchange on new or regeneration. In a final result allowed it the detailed determination of durability of the applied rigging elements in dependence on the type of the applied type of melt. It is noticed, that together with the increase of home-scrap participation in the charge wear of pressure machine instrumentation elements increases.
Go to article

Abstract

Use of welding technology for the repair of steel castings is particularly common in two areas. These include weld surfacing of protrusions that remained incomplete after casting, or filling the surface defects (cavities). These defects are more common for steel casting than for graphite cast iron, due to the lower fluidity of steel. This article describes a suitable technological process of repairing the defects on the casting using the welding technology. A specimen produced for this purpose was prepared by carving a groove into a cast steel plate 20 GL, which was then filled with a weld metal using MAG (135) technology. The following evaluation of the basic characteristics of the repaired site point to the suitability of the selected technological parameters of the repair procedure. Metallographic evaluation was carried out, further evaluation of mechanical properties by tensile test, bend test and Vickers hardness test. The proposed methodology for the evaluation repair of foundry defects in steel castings also meets the requirements for the approval of welding procedures in accordance with the relevant valid legislation.
Go to article

Abstract

The paper presents the research results of the influence of the precipitation hardening on hardness and microstructure of selected Al-Si and Al-Cu alloys obtained as 30 mm ingots in a horizontal continuous casting process. The ingots were heat treated in process of precipitation hardening i.e. supersaturation with subsequent accelerated or natural ageing. Moreover in the range of the study it has been carried out investigations of chemical constitution, microscopic metallographic with use of scanning electron microscope with EDS analysis system, and hardness measurements using the Brinell method. On basis of obtained results it has been concluded that the chemical constitution of the investigated alloys enables to classify them into Al alloys for the plastic deformation as EN AW-AlSi2Mn (alternatively cast alloy EN AC-AlSi2MgTi) and as EN AW-AlCu4MgSi (alternatively cast alloy EN AC-AlCu4MgTi) grades. Moreover in result of applied precipitation hardening has resulted in the precipitation from a supersaturated solid solution of dispersive particles of secondary phases rich in alloying element i.e. Si and Cu respectively. In consequence it has been obtained increase in hardness in case of AlSi2Mn alloy by approximately 30% and in case of AlCu4MgSi alloy by approximately 20% in comparison to the as-cast state of continuous ingots.
Go to article

Abstract

This article discusses the influence of Tungsten Inert Gas (TIG) surfacing of duplex cast steel on its hardness and structure. The samples of 24Cr-5Ni-2.5Mo ferritic-austenitic cast steel were subjected to single-overlay processes with the use of solid wire having the chemical composition similar to that of the duplex cast steel. As a result of the surfacing, the welds were obtained that had no welding imperfections with a smooth transition to the base material. In the test without the heat treatment, directly below the fusion line, we observe a ferrite band with a width of approximately 200 m without visible austenite areas. Some of the samples were then solution treated (1060°C). Both variants, without and after solution heat treatment, were subjected to testing. Significant changes in the microstructure of the joint were observed after the heat treatment process (heat affected zone and weld microstructure changes). In both areas, an increase in the austenite volume fraction after solution heat treatment was observed. Changes in the microhardness of the ferrite in the HAZ area directly below the fusion line were also observed.
Go to article

Abstract

The morphology, chemical composition and formation mechanism of non-metallic inclusions in magnetic alloy of Fe-Co-Ni-Cu-Al-Ti-Hf system were investigated. These alloys are used in manufacturing single-crystal permanent magnets. Modern methods for the identification of non-metallic inclusions, as well as computer simulation of the processes of their formation by Thermo Calc software were used in the work. It was found that studied alloy contains (Ti, Hf)S titanium and hafnium sulfides, (Ti, Hf)2SC titanium and hafnium carbosulfides, Ti2O2S titanium oxisulfide, HfO2 hafnium oxide, and Al2O3 aluminum oxide. No titanium and hafnium nitrides were found in the alloy. The bulk of nonmetallic inclusions are (Ti, Hf)2SC carbosulfides and (Ti, Hf)S sulfides. All carbides and many oxides are within carbosulfides and sulfides. When the sulfur content in the alloy is no more than 0.2%, and carbon content does not exceed 0.03%, carbosulfides are formed in the solidification range of the alloy and has an faceted compact form. If the sulfur content in the alloy becomes more than 0.2% and carbon content more than 0.03%, the carbosulfide formation begins before the alloy solidification or at the beginning stages of solidification. In this case, carbosulfides are dendritic and coarse. Such carbosulfides actively float in the solidified melt and often come to the surface of the castings. In this case, specific surface defects are formed in single-crystal magnets, which are called sulfide stains. All titanium and hafnium sulfides are formed at the lower part of solidification range and have elongated shape.
Go to article

Abstract

Detailed studies on the effects of pulsed laser interference heating on surface characteristics and subsurface microstructure of amorphous Fe80Si11B9 alloy are reported. Laser interference heating, with relatively low pulsed laser energy (90 and 120 mJ), but with a variable number (from 50-500) of consecutive laser pulses permitted to get energy accumulation in heated areas. Such treatment allowed to form two- Dimensional micro-islands of laser-affected material periodically distributed in amorphous matrix. The crystallization process of amorphous FeSiB ribbons was studied by means of scanning and transmission electron microscopy. Detailed microstructural examination showed that the use of laser beam, resulted in development of nanostructure in the heated areas of the amorphous ribbon. The generation of nanocrystalline seed islands created by pulsed laser interference was observed. This key result may evidently give new knowledge concerning the differences in microstructure formed during the conventional and lased induced crystallization the amorphous alloys. Further experiments are needed to clarify the effect of pulsed laser interference crystallization on magnetic properties of these alloys.
Go to article

Abstract

Archaeometallurgical investigations presented in this work focus on analysing the microstructure as well as mechanical properties of artefacts from the17th in form of findings performed from cast iron as well as copper casts. The presented research results extend the up-to-date knowledge and present the analysis of structural compounds found in the microstructure of the artefacts from the time dating back to the late Middle Ages in the region around Czestochowa, Poland. The tested samples were found in earth in the city centre under the present marketplace. The excavation works were carried out in summer in the year 2009, and have resulted in the excavation of artefacts in form of copper block of the weight of several kg. The excavation action was led by a group of Polish archaeologists collaborating with the local authorities. The performed pre-dating of this element determines the age of the artefacts as the 17th century AD. The excavations that have been taking place since 2007 have widened the knowledge of the former Czestochowa. Historians of this town have suggested, that the found weight and traces of metallurgical activity suggest that the exposed walls were an urban weight. The weight is visible on the 18th century iconography. What was find on the Old Market indicates that there was a lush economic life before the Swedish invasion in this part of Poland. Some buildings lost their functions or were changed, others died in fires, but new places developed. To describe the microstructure, with its structural components, research was done using microscopy techniques, both of the light as well as electron microscopy (SEM), also chemical composition analysis was carried out using the EDS technique, as well as tool for phase analysis were applied in form of X-Ray Diffraction (qualitative analysis), especially for the reason to describe the phases present in the excavated material. This research will help to obtain new information in order to investigate further archaeometallurgical artefacts, extending the knowledge about middle age metallic materials its usage and manufacturing.
Go to article

Abstract

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Go to article

Abstract

The multiple direct remelting of composites based on the A359 alloy reinforced with 20% of Al2O3 particles was performed. The results of both gravity casting and squeeze casting were examined in terms of the obtained microstructure and mechanical characteristics. In microstructure examinations, the combinatorial method based on phase quanta theory was used. In mechanical tests, the modified low cycle fatigue method (MLCF) was applied. The effects obtained after both gravity casting and squeeze casting were compared. It was noted that both characteristics were gradually deteriorating up to the tenth remelting. The main cause was the occurrence of shrinkage porosity after the gravity casting. Much better results were obtained applying the squeeze casting process. The results of microstructure examinations and fatigue tests enabled drawing the conclusion that the A359 alloy reinforced with Al2O3 particles can confer a much better fatigue life behavior to the resulting composite than the A359 alloy without the reinforcement. At the same time, comparing these results with the results of the previous own research carried out on the composites based also on the A359 alloy but reinforced in the whole volume with SiC particles, it has been concluded that both types of the composites can be subjected to multiple remelting without any significant deterioration of the structural and mechanical characteristics. The concepts and advantages of using the combinatorial and MLCF methods in materials research were also presented
Go to article

Abstract

The influence of a shape of graphite precipitates in cast iron on the thermal shock resistance of the alloy was initially determined. Investigations included the nodular cast iron and the vermicular one, as well as the cast iron containing flake graphite. The thermal shock resistance was examined at a special laboratory stand which allowed for multiple heating and cooling of specimens within the presumed temperature range. The specimens were inductively heated and then cooled in water of constant temperature of about 30°C. There were used flat specimens 70 mm long, 5 mm thick in the middle part, and tapering like a wedge over a distance of 15 mm towards both ends. The total length of cracks generated on the test surfaces of the wedge-shaped parts of specimens was measured as a characteristic value inversely proportional to the thermal shock resistance of a material. The specimens heated up to 500°C were subjected to 2000 test cycles of alternate heating and cooling, while the specimens heated up to 600°C underwent 1000 such cycles. It was found that as the heating temperature rose within the 500-600°C range, the thermal shock resistance decreased for all examined types of cast iron. The research study proved that the nodular cast iron exhibited the best thermal shock resistance, the vermicular cast iron got somewhat lower results, while the lowest thermal shock resistance was exhibited by grey cast iron containing flake graphite.
Go to article

Abstract

The study presents the results of the application of a statistical analysis for the evaluation of the effect of high-melting additions introduced into a pressure cast Al-Si alloy on the obtained level of its proof stress Rp0.2. The base Al-Si alloy used for the tests was a typical alloy used for pressure casting grade EN AC-46000. The base alloy was enriched with high-melting additions, such as: Cr, Mo, V and W. The additions were introduced into the base Al-Si alloy in all the possible combinations. The content of the particular high-melting addition in the Al-Si alloy was within the scope of 0.05 to 0.50%. The investigations were performed on both the base alloy and alloy with the high-melting element additions. Within the implementation of the studies, the values of Rp0.2 were determined for all the considered chemical compositions of the Al-Si alloy. A database was created for the statistical analysis, containing the independent variables (chemical composition data) and dependent variables (examined Rp0.2 values). The performed statistical analysis aimed at determining whether the examined high-melting additions had a significant effect on the level of Rp0.2 of the Al-Si alloy as well as optimizing their contents in order to obtain the highest values of the Al-Si alloy's proof stress Rp0.2. The analyses showed that each considered high-melting addition introduced into the Al-Si alloy in a proper amount can cause an increase of the proof stress Rp0.2 of the alloy, and the optimal content of each examined high-melting addition in respect of the highest obtained value of Rp0.2 equals 0.05%.
Go to article

Abstract

In this work, the effect of the microstructure on corrosion behavior of selected Mg- and Al-based as cast alloys, was evaluated. The electrochemical examinations were carried out, and then a morphology of corrosion products formed due to local polarization on materials surface, was analyzed. It was documented that the presence of Mg2Si phase plays an important role in the corrosion course of Mg-based alloy. A selective etching was observed in sites of Mg2Si precipitates having “Chinese script”- like morphology. Analogous situation was found for Al-based alloy, where the key role was played by cathodic θ-CuAl2 phase.
Go to article

Abstract

In cast iron foundries, used ferromagnetic batch materials can be transported and loaded into the furnace by lifting magnet. The precision of these operations by using electromagnetic grippers depends primarily on the variation in the mass of the batch material pieces. The article presents the characteristics of size of the batch materials used in the selected iron foundry. The obtained ranges mass values of individual pig iron ingots have been presented. It has been found that the mass of individual pig iron ingot may differ ± 25% from the declared by producer. The mass range of individual pieces of crushed or uncrushed return scrap was examined. Some pieces of uncrushed scrap have the mass more than three times the average weight of pieces of this scrap. Characteristics of the lifting capacity of these materials by a lifting magnet suspended to the crane was determined. Analysis of the obtained results indicates that for materials with less diversified mass of individual ferromagnetic pieces it is possible to use a gripper to weight a bigger portion with the same control setting. It was also found that there is a significant dispersion for a given gripper control, especially for materials with a wide range of individual pieces mass changes.
Go to article

Abstract

Light weight, low density with high mechanical properties and corrosion resistance, aluminum is the most important material and is commonly used for high performance applications such as aerospace, military and especially automotive industries. The researchers who participate in these industries are working hard to further decrease the weight of end products according to legal boundaries of greenhouse gases. A lot of research was undertaken to produce thin sectioned aluminum parts with improved mechanical properties. Several alloying element addition were investigated. Yet, nowadays aluminum has not met these expectations. Thus, composite materials, particularly metal matrix composites, have taken aluminum’s place due to the enhancement of mechanical properties of aluminum alloys by reinforcements. This paper deals with the overview of the reinforcements such as SiC, Al2O3 and graphene. Graphene has recently attracted many researcher due to its superior elastic modulus, high fatigue strength and low density. It is foreseen and predicted that graphene will replace and outperform carbon nanotubes (CNT) in near future.
Go to article

Abstract

Image analysis allows to acquire a number of valuable quantitative informations on the observed structure and make appropriate conclusions. So far, a large part of analyzed images came only from light microscopes, where it was a possibility of accurately distinguish the different phases on the plane. However, the problem happened in the case of the observation of images obtained by scanning electron microscopy. In this case, the presence of various shades of gray, and the spaciousness of the image attained. To perform the analysis the matrix images of the ausferritic ductile iron were used. Full analysis was carried out using the computer program MicroMeter 1.03. Results obtained in the analysis were related directly to the results from X-ray diffraction. Obtained as a result of the analysis were related directly to the results from X-ray diffractometer. The following technique has weaknesses, including the misinterpretation by the operator microscope or program. After all, it was possible to obtain similar results to the result that has been obtained from X-ray diffractometer.
Go to article

Abstract

The paper refers to earlier publications of the author, on identification of properties of thermomechanical, chemically hardened core/mold sands. In that earlier period, first version of the original DMA apparatus, produced by a Polish company Multiserw-Morek, was used. The Hot Distortion (HD) study results, published by the author in 2008, referred to phenomena accompanying a thermal shock in real conditions of thermal interaction of a liquid alloy on a mold, in reference to a shock possible to obtain in laboratory conditions, without use of liquid alloy as a heat source, with analysis of solutions applied in the DMA apparatus. This paper presents author’s observations on testing a new, innovative version of the LRu-DMA apparatus, containing a module allowing the Hot Distortion (HD) study. Temperature of specimens achieved in the case of the gas burner heating reaches values definitely above 800°C on the heated side and 610°C on the other side. Using an electric radiator, with maximal temperature of 900°C allows obtaining temperatures in between 225-300°C.
Go to article

This page uses 'cookies'. Learn more