Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Silica multichannel monoliths modified with zirconia, titania and alumina have been used as reactive cores of microreactors and studied in chemoselective reduction (MPV) of cyclohexanon/benzaldehyde with 2-butanol as a hydrogen donor. The attachment of metal oxides to the silica surface was confirmed by FT–IR spectroscopy, and dispersion of metal oxides was studied by UV–Vis spectroscopy. the catalytic activity of the lewis acid centres in both chemical processes decreased in the order zirconia > alumina > titania. This activity is in good agreement with dispersion and coordination of metal species. good stability of zirconia-grafted reactors was confirmed. high porosity of the monoliths and the presence of large meandering flow-through channels with a diameter of ca. 30 mm facilitate fluid transport and very effective mixing in the microreactors. The whole synthesis process is perfectly in line with trends of modern flow chemistry
Go to article

Abstract

Preparation and properties of hierarchically structured porous silica monoliths have been discussed from the viewpoint of their application as continuous microreactors for liquid-phase synthesis of fine chemical in multi kilogram scales. The results of recent topical papers published by two research teams of Institute of Chemical Engineering Polish Academy of Sciences (ICE) and Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology (SUT) have been analyzed to specify the governing traits of microreactors. It was concluded that even enhancement factor of 100 in activity, seen in enzyme catalyzed reactions, can be explained by a proportional reduction of its physical constraints, i.e. huge enhancement of external mass transfer and micromixing. It is induced by very chaotic flows of liquid in tens of thousands of waving connected channels of ca. 25–50 mm in diameter, present in the skeleton. The scale of enhancement in the case of less active catalysts was smaller, but still large enough to consider the most practical applications.
Go to article

This page uses 'cookies'. Learn more