Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Currently more and more research is being done on integrated weed management to reduce or avoid herbicide use. Some growers are already using isotherapic dilutions to control weeds in organic farming. Isotherapy is different from homeopathy because it uses diluted and potentized (succussed) solutions of alcoholic macerate of the very pest causing health troubles. We set up a germination experiment to test if isotherapic dilutions of leaf macerate of annual ryegrass affect the dynamics of its seed germination in Petri dishes. Our results were diverse, from no effect to 10% more growing degree days necessary to reach 50% germination. It is doubtful that so low an effect will contribute to integrated weed management unless the slightly delayed germination triggers secondary effects at other life stages. This is in accordance with the scientific literature on that topic: two-fifths of the reports showed no effect, two-fifths resulted in positive responses and one-fifth had diverse responses for the criteria tested.
Go to article

Abstract

Isatis cappadocica Desv. is a newly found As-hyperaccumulator showing very high remediation efficiency in polluted soils. We studied the effects of arsenic at 0-1400 μM concentrations on seed germination, relative root length, relative shoot height, and root and shoot biomass in young seedlings of I. cappadocica. The seeds were from Iranian arsenic-contaminated mine spoils and from a non-contaminated population. The control for reference was brassica (Descurenia sofia). Germination decreased significantly versus the control with increasing arsenic concentrations. The response to arsenic exposure differed between the I. cappadocica populations and D. sofia. I. cappadocica from mine spoil seeds showed strong resistance to the highest As concentration, with no adverse effects until the 1000 μM dose. Germination from non-mine seeds of I. cappadocica decreased to 89.6% at 1400 μM As. D. sofia germination was completely inhibited at 400 μM As. Relative root length (RRL) and relative shoot height (RSH) decreased with increasing As concentration. Overall, RRL correlated with RSH. Shoot height and root length were more sensitive to arsenic than other endpoints, and might be used as arsenic toxicity indicators. I. cappadocica showed more As tolerance than the reference brassica.
Go to article

Abstract

Light exposure is an important environmental factor which breaks seed dormancy in many plant species. Phytochromes have been identified as playing a crucial role in perception of the light signal that releases seed germination in Arabidopsis. Phototropins (Phot1, Phot2) are blue/UV-photoreceptors in plants which mediate phototropic responses, chloroplast relocation, hypocotyl growth inhibition and stomata opening. We studied germination under different light conditions in Arabidopsis Phot1-null and Phot2-null mutants and in a double phot1phot2 mutant. Germination of single phot1 and phot2 mutants in darkness was much lower than in wildtype (WT) seeds, whereas double phot1phot2 mutant lacking both functional phototropins germinated at frequency comparable to WT seeds, irrespective of light and temperature conditions. Light treatment of imbibed seeds was essential for effective germination of phot1, irrespective of low-temperature conditioning. In contrast, cold stratification promoted dark germination of phot2 seeds after imbibition in dim light. Low germination frequency of phot1 seeds under low light intensity suggests that the presence of functional Phot1 might be crucial for effective germination at these conditions. The lower germination frequency of phot2 seeds under continuous light suggests that Phot2 might be responsible for stimulating germination of seeds exposed to direct daylight. Thus, the phototropin system may cooperate with phytochromes regulating the germination competence of seeds under different environmental conditions
Go to article

Abstract

We examined the response of plants of various crop and weed species to cyanamide in order to evaluate allelochemical- mediated interactions between the species. We studied germination and seedling growth in the common weeds Galium aparine L. and Amaranthus retroflexus L., and the crops Zea mays L., Triticum aestivum L., Lactuca sativa L., Solanum lycopersicum L. and Sinapis alba L. as acceptor plants. Concentration-dependent phytotoxic effects of cyanamide were noted during seed germination and in the root and shoot growth of the tested plants. The monocotyledonous plants generally were less sensitive to cyanamide treatment. Seed germination and seedling growth of the dicotyledonous plants were strongly inhibited by the allelochemical at both tested concentrations (1.2 mM, 3 mM). We conclude that cyanamide has potential for use as a natural herbicide only in specific field systems of cyanamide-tolerant monocotyledonous crops accompanied by cyanamide-sensitive dicotyledonous weeds.
Go to article

This page uses 'cookies'. Learn more