Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.
Go to article

Abstract

Sand samples with furan binder were prepared using Sand, Furfuryl Alcohol and Toluene Sulfonic Acid with ratio 100:0.85:0.30. To identify and quantify gases releasing from furan binder various studies like FTIR, TGA and GC-MS were carried out. After analyzing our materials using above mentioned characterizations the chemical formula of the Resin and Binder and amount of gases releasing from composition were confirmed. After studying various reports on pyrolysis process of furan binder calculation of the % of various gases emitting during pyrolysis process of furan was carried out. Sample of gas collected from mold was analyzed using GC-MS. Based on GCMS measurement various gases emitting from furan sand mold were identified and their amount were calculate and compared with the international standers of permissible gas emission limits in a foundry. The purpose of this paper is to assist foundries in pollution prevention by devising clean technologies which maintain or improve the quality of ambient surrounding. This paper aimed at minimization of pollution of air by using various techniques.
Go to article

Abstract

The organo-inorganic commercial binder Albertine F/1 (Hüttenes-Albertus) constituting the starch-aluminosilicate mixture was directed to structural studies. The paper presents a detailed structural analysis of the binder before and after exposure to physical curing agents (microwaves, high temperature) based on the results of infrared spectroscopy studies (FTIR). An analysis of structural changes taking place in the binder system with the quartz matrix was also carried out. Based on the course of the obtained IR spectra, it was found that during the exposure on physical agents there are structural changes within the hydroxyl groups in the polymeric starch chains and silanol groups derived from aluminosilicate as well as in the quartz matrix (SiO2). The curing of the molding sand takes place due to the evaporation of the solvent water and the formation of intramolecular and intermolecular cross-linking hydrogen bonds. Type and amount of hydrogen bonds presence in cured molding sand have an impact on selected properties of molding sand. Results indicates that for molding sand with Albertine F/1 during conventional heating a more extensive network of hydrogen bonds is created.
Go to article

Abstract

The paper presents the results of thermoanalytical studies by TG/DTG/DTA, FTIR and GC/MS for the oil sand used in art and precision foundry. On the basis of course of DTG and DTA curves the characteristic temperature points for thermal effects accompanying the thermal decomposition reactions were determined. This results were linked with structural changes occurred in sample. It has been shown that the highest weight loss of the sample at temperatures of about 320°C is associated with destruction of C-H bonds (FTIR). In addition, a large volume of gases and high amounts of compounds from the BTEX group are generated when liquid metal interacts with oil sand. The results show, that compared to other molding sands used in foundry, this material is characterized by the highest gaseous emissions and the highest harmfulness, because benzene emissions per kilogram of oil sand are more than 7 times higher than molding sand with furan and phenolic binders and green sand with bentonite and lustrous carbon carrier.
Go to article

Abstract

The paper presents the results of studies on the influence of the 2010 Vistula flood on the humification process in the bottom sediments of the Goczałkowice Reservoir in southern Poland. Due to its location in the vicinity of farmlands, forests and urbanized areas, the Goczałkowice Reservoir is characterized by amplified and intense humification processes within its sediments. The studies were focused on the determining the influence of the flood wave containing organic and inorganic suspensions on these processes. Humic acids were analyzed using two spectroscopic methods: Electron Paramagnetic Resonance (EPR) and Fourier Transform Infrared Spectroscopy (FT-IR). Application of these methods allowed to determine the values of free radicals and of the g-factor, which are indicators of oxidation, aromatization and maturation of humic acids during the humification process, as well as the value of the 1650/1720 ratio, reflecting the dissociation of the COOH group to COO− and the formation of complexes of transitional metals with humic acids during the humification process.
Go to article

Abstract

Fresh bituminous coal was stored in air-/water-oxidation conditions after 20 and 80 days, respectively. FTIR results show that the Hydrophilicity Index (HI) value of air-oxidized coal is higher than that of water-oxidized coal. SEM results show that the surface roughness of water-oxidized coal is higher than that of air-oxidized coal and water-oxidized coal surface has more holes and chips than air-oxidized coal surface. Flotation results show that the floatability of water-oxidized coal is worse than that of air-oxidized coal. The flotation performance of both air-/water-oxidized coals can be improved at larger collector dosages. The air-oxidation processes changed the HI value of coal greater than the water-oxidation processes while the water-oxidation processes changed the surface morphology of coal greater than the air-oxidation processes. Both the changes in HI value and surface roughness of coal determine the flotation behavior of oxidized coal. The changes in the surface morphology of coal particles after oxidation processes may be the primary factor determining the floatability of coal particles while the changes in the HI value of coal particles may be the inferior factor.
Go to article

This page uses 'cookies'. Learn more